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Summary

Distributed lag models are statistical tools that are designed to analyze the effect of non-
contemporaneous associations between time series. An important example that illustrates
the need for such models in epidemilogical research is the effect of smoking on the actual
health status of individuals: the contemporaneous effect of smoking on health will be
negligible, it is the long-term exposure over 20 - 30 years, which harms not only the
bronchial system but also causes the cardiovascular system to deterioate.

First we give an introduction to the theoretical background of distributed lag modeling,
describe some classes of distributed lag models and outline some of the associated model
estimation and specification problems. The Poisson distributed lags are introduced as a
very flexible but parameter parsimonous class of distributed lag models that need less
a priori information than Polynomial distributed lag or Shiller distributed lag models.
Poisson lag distributions can be summarized by single parameter which corresponds to
the mean lag and the variance of the lag distribution. Their smooth functional form
enhances graphic presentations and comparisons. One disadvantage of Poisson distributed
lag estimators is the computational burden of non-linear optimization techniques. For our
analysis we used a general purpose simulated annealing algorithm.

Five time series from the United Kingdom are used as an exploratory example for epi-
demiological distributed lag modeling based on Poisson lags: Total mortality rate as
dependent variable and unemployment rate, spirits consumption, cigarette consumption
and real gross domestic product as independent variables. Data for the five time series
were available for years 1950 - 1994.

The time series are plotted for levels and first differences in conjunction with the associated
autocorrelation functions. Three of the time series, i.e., unemployment rate, spirits and
cigarette consumption exhibit a structural break within the level series, the break-point
year can be estimated roughly for all the three series at about 1970. With the exception
of total mortality, all the time series exhibit heteroscedasticity in first differences.

The comparison of the single indendent variable models (Model 1-4: levels, Model 5-
8: first differences) with the simultanousely estimated four indendent variable model 9
(levels) and model 10 (first differences) reveal dramatic differences for the corresponding
‘crude’ and ‘adjusted’ estimated Poisson lag distributions, e.g. the mean lag for cigarette
consumption increased from 5.80 years (model 3) to circa 10 years (model 9).

The results demonstrate the importance of appropriate adjustment in epidemiological
aggregated time series regression models and encourage the further development and

refinement of econometric tools for applications in epidemiological research.
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1 Distributed lag modeling

1.1 Theoretical background

Very often the effect of an event persists over time so that for the measurement of an
overall effect it is not sufficient to analyse contemporaneous associations between two
variables. In many cases the magnitude of an actual value of a dependent variable can
only be explained when the impact of earlier values of a independent variables have been
taken into account. An important example from epidemiological research is the effect of
smoking on the actual health status of individuals: the contemporaneous effect of smoking
on health will be negligible, it is the long-term exposure over 20 - 30 years, which harms
not only the bronchial system but also causes the cardiovascular system to deterioate. Our
interest here is, to provide a methodological framework for the analysis of the development
of mortality levels, that have experienced significant long-term declines around the world
(Murray/Chen [1993]).

To derive a simple statistical model that allows us the analysis of non-contemporaneous
relationships between variables, we start from the classical linear regression model with a

dependent variable y; and only one independent variable x;:

Y= 0Bo+ e +u, t=1,...,T. (1)

To keep things simple we assume that wu; is a zero-mean white-noise process with variance

o2. A straightforward approach to take into account the effect of earlier values of the

independent variable on y; is to extend equation (1) as follows:

Y=o+ Boxy + Pz + Botyo+ ... +u t=1,...,T, (2)

i.e., we add lagged values of the independent variables x;.

Equation (2) can be rewritten as:

yp=a+y Biawi+u t=1,....T, (3)
i=0

The general form of equation (3) allows for an infinite lag length. In most situations there
exist a number M < oo with 3; = 0 for ¢ > M. This number M is called the maximum

lag length. With a finite lag length equation (3) can be written as:



M
w=a+> Gawitu t=1,..,T (4)
=0

Alternative methods and their effects for the treatment of the truncation remainder
R = Z BiTi—;
i=M+1
are discussed by Schmidt [1976] and Schmidt/Guilkey [1976].

It is possible to reparameterize equation (4) as

M
yt:a+ﬁzwixt—i+ut tzla"'7Ta (5)
i=0
with
Gi -z
W; = —=+ and w; = 1.
o' B 20:
We will refer to the lag weights (wy, . .., wys) as the normalized lag weights or the normal-

ized lag distribution. A useful statistic by which to compare different lag distributions is

the mean lag w:

M
w = Z iwi,
i=0

provided that the normalized lag weights w; have equal sign and the lag distribution is
unimodal.
The naive approach, to try to estimate the parameters a, o, . . ., 5, from equation (4) with

the usual Ordinary Least Squares (OLS) approach, will run into at least two difficulties:

1. The maximum lag length M has to be determined. For all practical purposes M has
to be so much smaller than the number of available observations that the remaining
number of observations, T'— M, is large enough to allow for useful statistical inference

from the regression analysis.

2. The lagged independent variables x;_1,...,x;_p; will show a high degree of multi-
collinearity, i.e., nearly linear dependence. This may make it numerically difficult to
solve the standard normal equations from the OLS approach. Even when a numer-
ical solution is found, which is the normal case with modern computer hardware, the
solutions are unstable in the sense that small changes in the model, e.g. increasing
or decreasing the maximum lag length M by one, may result in dramatic changes

of the estimated lag weight coefficents (by, ..., bys) -
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The determination of the maximum lag length M can be done simply by educated guess-
ing, testing procedures or by the use of model-order selection criteria, such as AIC (Akaike
[1974]) or BIC (Schwarz [1978]). As there is no space here to provide even an elementary
discussion of the pros and cons of different approaches for the determination of the max-
imum lag length, we assume for the remaining part of this paper that the maximum lag
length is theoretically given.

To overcome the problem of multicollinearity various solutions have been proposed which
have one feature in common (see Judge et al. [1985, p. 355ff]): All these solutions put
restrictions on the coefficients 3y ..., Oy, i.e., the dimension of the parameter space is
reduced by assuming that the lag weights (; are values of a function f(7).

As early as 1937, Fisher[1937] proposed arithmetically declining lags, with the function
f(7) given by:

0 1> M

An appropriate parameter ¢ has to be provided by the user.

The approach of Fisher as given in equation (6) was a computationally simple solution,
but his approach was very specific and inflexible.

Circa 30 years later a far more general approach to overcome the multicollinearity problem
has become very popular among econometricians: the Polynomial distributed lag (PDL)
or Almon distributed lag when it is named after the author (Almon[1965]). She suggested
that the function f (i) should be a polynomial of degree ¢ < M, i.e.

Bi = co+ cii+ cai® + .. cyid. (7)

The polynomial lag shape is very flexible and the parameters could be estimated eas-
ily. The presentation of the Almon distributed lag scheme as a special Restricted Least
Squares (RSL) problem made it easier to analyse the statistical properties of the Almon
lag estimator. With the RSL presentation, a polynomial of degree ¢ may be imposed on

the lag weights by specifying M — ¢ linear homogenous restrictions of the form

RB3=0 (8)

on the model y=XB+4wu. The elements of the restricting matrix R can be derived from

the well known Pascal s triangle. It was also easy to add additional constraints on single



lag weights or so called endpoint constraints with f_; = 0 and (3,41 = 0, although these
endpoint constraints could have unintended side effects.

The Almon lag scheme was more flexible than other lag schemes, but Shiller[1973] thought
that it may be too restrictive since the functional form of the lag weights is supposed to
follow exactly a polynomial of order ¢q. His solution imposed not a deterministic constraint

on the lag weights as given in equation (8) but a stochastic constraint:

RB=v 9)

It is assumed that the stochastic vector v has a skalar variance-covariance matrix of the
form E(vv') = (0?/k*)I. With an a priori specified smoothing parameter k the Shiller
restricted lag weight estimator ,é: (ﬁo, ey 5;\/1)/ can be simply derived as an extension to

the solution of the OLS normal equations:

B=[X'X+kRR'X'y. (10)

The smoothing parameter k£ controls the form of the lag weights: for £ = 0 the solution of
the Shiller restricted lag weight estimators is identical to the unrestricted OLS solution,
for k — oo the solution approaches the Almon lag estimator.

Since the numerical algorithms for the computation of Almon lag estimators and Shiller
lag estimators are easily implemented as the solutions of special linear equation systems,
these two approaches are the most common solutions which are provided by widespread
commercial econometric software packages like RATS™.

Even when the greater flexibility of the Shiller lag estimator provides an advantage over
the Almon lag estimator, the price to pay for this comfort is that not only an appropriate
polynomial order ¢ has to be determined, but also an appropriate smoothing parameter
k has to be found. Shiller[1973] suggested a ‘rule of thumb’ for the determination of
the smoothing parameter k but the statistical validity for such a procedure is question-
able. It has to be emphasized that when maximum lag length, polynomial order and the
smoothing parameter are determined by an iterative ‘data squeezing’ process, the stat-
istical properties of the finally resulting estimators are completely undefined so that any

valid statistical inference is impossible.

1.2  Poisson distributed lags

One approach to overcome the problem of insufficient a priori information is to use an-

other class of distributed lag estimators, which provides enough flexibility with regard to



functional form but minimizes the requirements for additional a priori parameters. Here
we will introduce the Poisson distributed lag model (Friedrich[1982]).
Poisson lags are derived directly from the Poisson probability distribution, and the nor-

malized lag weights are given by:

)\i
a0 (11)
7!

wi(A\) =e
The mean lag and the variance of the Poisson lag distribution as specified by equation
(11) is identical to the parameter A, i.e. w = A. In dependence of only one parameter A we
get very flexible lag distributions, typical shapes for Poisson lag distributions are given in
Fig. 1.2 (a)-(c) . The shape of the poisson lag distributions is very different for A < 1 in
comparison to A > 1. With A < 1 the Poisson lag distribution has a maximum at lag ¢ = 0
and the values decline very fast to zero (Fig. 1.2 (a)). With A > 1 the lag distribution
first increases, reaches a maximum and then declines, in dependence of A the increase and
decline may be asymmetric (A = 1.5,3.0) or more or less symmetric (A = 7.0).
In practical situations, especially with a limited number of observations and a too small
data-enforced maximum lag length M, another shape of the Poisson lag distribution may
be seen which is described in Fig. 1.2 (c¢). These Poisson lag distributions are right
truncated and may even have their global maximum at the maximum lag length M. In
the case of truncated Poisson lag distributions it is no longer valid that the mean lag is
identical to parameter A. For this reason we calculate the mean lag for the Poisson lag

distribution as usual, i.e.:
M
i=0

where the slight change in notation emphasizes just the fact that the mean lag is calculated
from a Poisson lag distribution.
In econometrics Poisson lag distributions have a special advantage as this class of lag
distributions can be theoretically derived from basic behavioral reaction equations for
adjustment processes (Friedrich[1982]). Other examples for the use of economic reas-
oning for the derivation of special lag distributions can be found in Grilliches[1968] or
Nerlove[1972]. Up to now, no analogue approach is used as foundation of epidemiological
distributed lag modeling.
The Poisson lag model can be easily extended to the case of several independent variables:
Al
|

K M,
yt:(x+25k267’\’“i—xt,@k+ut t=1,...,T. (12)
k=1 =0 :



In the case of K independent variables the use of the poisson lag distribution has the
advantage that the number of parameters to be estimated can be reduced to an absolute
minimum of 2K + 1. This results in a maximum number 7' — 2K — 1 for the degrees of
freedom which makes the poisson distributed lag model a natural approach for distributed
lag modeling with short time series.

As for several independent variables, the Poisson lag distributions can be estimated sim-
ultaneously, this approach is especially suited to make comparisons between ‘crude’ es-
timators and ‘adjusted’ estimators when we refer to the terms from epidemiology: With
a crude estimator the relationship between two variables is analyzed, with an adjusted
estimator the change of a crude estimator is analyzed when additional, possibly confound-
ing, variables are included in a model, and all parameters are estimated simultaneously.
Such adjusted estimators are extremely important, as bivariate statistical analysis can be
very misleading. This can also be demonstrated with the results that we have found in
our study.

A closer look at equation (12) reveals a problem which also explains why the use of
Poisson lag distributions is not as widespread as the use of Almon lags or Shiller lags:
The parameters Aq,...,\; enter into the equation in a non-linear manner, a solution
to the associated non-linear least squares problem cannot be calculated by solving a
simple system of linear equations. When estimators for the parameters A\, ..., Ag have
been obtained by non-linear optimization techniques, the estimators of 3y, ..., Ok can be
calculated via the usual OLS approach.

The discussion of non-linear optimization techniques is far beyond the scope of this short
introduction to distributed lag modeling. After a lengthy search process for a reliable
procedure we decided to use a modern stochastic optimization technique, simulated an-
nealing, for the calculation of estimators for the parameters \q,..., A\y. We summarize
briefly the concept and the advantages of the simulated annealing approach for non-linear
optimization (Goffe et al. [1994]):

Simulated annealing ‘s roots are in thermodynamics, where one studies a system s thermal
energy. A description of the cooling of molten metal motivates this algorithm. After slow
cooling (annealing), the metal arrives at a low energy state. Inherent random fluctuations
in energy allows the annealing system to escape local energy minima to achieve the global
minimum. But if cooled very quickly (or 'quenched’), it might not escape local energy
minima and when fully cooled it my contain more energy than annealed metal. Simulated
annealing attempts to minimize some analogue of energy in a manner similar to annealing

to find the global optimum. One important advantage of simulated annealing is that it



can escape from local maxima or minima and can maximize or minimize functions that are
otherwise difficult or impossible to optimize. One special advantage for the estimation
of the parameters \q,...,\; was that the restrictions 0 < Ay < M; could be easily
enforced, which was not possible with the other non-linear optimization algorithms that
had been tested. Another advantage is that when the stochastic optimization process of
the simulating annealing algorithm is run twice for the same function, with the initial
seed of the random number generator set to different values, and the two found optima
are identical, then we can have considerable confidence that this optimum is really the
global optimum. We used the GAUSS implementation of Bill Goffe s simulated annealing
program which was written by E.G. Tsionas[1995] from the Department of Economics at
the University of Toronto. One, and probably the only, disadvantage of the simulated
annealing algorithm is that the many functions evaluations that are necessary to find
a global optimum require a good deal of computational power. This disadvantage is
increasingly vanishing as computers seem to become much more powerful from year to
year, but actually this disadvantage is large enough not to use it as a daily routine
algorithm for the computation of distributed lag models.

Remark:

When we compare different Poisson lag distributions we plot the normalized lag weights
w;, and print the associated mean lag M\; nearby. Please note that the evaluation of
the total effect also requires taking into account the associated parameter (3, which is

especially important because of the sign of .
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2 Results

2.1 Time series properties of model variables

With Figs. 2 to 6 we provide a summary of the most important time series characteristics
for all the variables that we will use in our exploratory Poisson distributed lag modeling.

Data for the five time series were available for years 1950 - 1994.

1. Total mortality rate (RTMORT), Fig. 2. As the dependent variable we use
the age- and sex- adjusted total mortality rate. The reference population which
was used for the direct standardization is given in appendix A. The level of the
total mortality rate shows a remarkable secular decline from 1950 to 1994, which
is typical not only for for all the EU countries and the US which were analysed in
our study but for all industrialized nations outside of Eastern Europe. The shape
of the associated autocorrelation function is typical for a non-stationary time series:
the autocorrelations are very high and decay only slowly with increasing lag length,
for lag 11 and higher all the autocorrelation values are within the approxmative
95% confidence intervals which are plotted in all autocorrelation plots with two
small dashed lines. When we look at the total mortality rate in first differences
no specific trend pattern can be recognized. The time series fluctuates irregularly
around a constant. The associated autocorrelation function for the first differences
of the total mortality rate decays very quickly. There is only one value of the
autocorrelation at lag 1 which is not within the 95% confidence interval. From
a time series perspective we may characterize the total mortality rate as a typical
random walk with negative drift, although such a time series with a stochastic trend
may be difficult to distinguish from a time series with a deterministic trend. Even
without using statistical inference procedures, such as unit root tests (Banerjee et al.
[1993]), we can infer from the basic descriptive analysis that the total mortality rate
is a stationary time series in first differences or, in other words, the total mortality

rate is integrated of order one, i.e., I(1).

2. Unemployment Rate (UR), Fig. 3. The unemployment rate exhibits a much
more complicated time series pattern than the total mortality rate. The unemploy-

ment rate was remarkably low from 1950 to 1970. Within the seventies a dramatic
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increase began that peaked in 1985 and 1986. After 1986 the unemployment rate
began to decline up to 1990, then the trend reversed again. It seems that the oil
crisis shocks that happened in the seventies initiated a restructuring process in the
British economy and that the labour market changed substantially. From a time
series perspective we have to acknowledge that the unemployment rate has a struc-
tural break, we suggest setting the breakpoint at the year 1970. The autocorrelation
function calculated from the level values of the unemployment rate shows the same
typical nonstationary, slowly decaying, shape that we have seen for the total mor-
tality rate. When we look at the plot for the differenced unemployment rate we see
the same kind of irregular but cyclical pattern: the amplitude of the cyclical pat-
tern increases with time, starting in the seventies. The associated autocorrelation
function for the first differences exhibits a more pronounced cyclical pattern, the
maximum and borderline significant autocorrelation function value can be observed
at lag 10. This period corresponds to a typical business cycle period. In general,
time series with a pattern like the unemployment rate are difficult to deal with: the
small number of observations will make it impossible to model the level time series
separately for the two different subperiods. The first differences would require at
least some kind of variance-stabilizing transformation, e.g., a Box-Cox transforma-
tion. For the exploratory analysis here, we take the level unemployment rate as it

is and assume that the first differences are stationary.

. Spirits consumption per capita (ALC), Fig. 4. The shape of the spirits con-
sumption series is surprisingly very close to the shape of the level unemployment
rate, although there is a slightly upward trend from the beginning in 1950. A dra-
matic increase of spirits consumption starts in 1970, the time series peaks in 1979.
From 1980 to 1994 the series fluctuates around a very high level. The autocor-
relation function is nearly identical to that of the unemployment rate. Looking
at spirits consumption per capita in first differences, we see an abrupt increase in
volatility from 1970 to 1980. This kind of heteroscedasticity is extremely difficult
to handle. The autocorrelation function of the first differences looks like the auto-
correlation function of a white noise process. In contrast to the first differences of

the unemployment series no sign of a business cycle can be found.

. Cigarette consumption per capita (CIG), Fig. 5. The cigarette consumption
series also shows a structural break, but in contrast to the unemployment rate and to

the spirits consumption series, cigarette consumption starts to decline dramatically
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after 1970. From 1985 on, cigarette consumption starts to increase again. The
autocorrelation function for the level series is again typical for a nonstationary time
series. The first differences of the cigarette consumption series has no volatility
outbreak but shows an increasing variance with time. The associated autocorrelation

function also does not indicate any sign of a business cycle.

5. Real Gross Domestic Product (RGDP), Fig. 6. This variable is used as a simple
socio-economic welfare indicator. At first glance, the real gross domestic product
series shows a relatively smooth upward trend, but the plot of the series with first
differences reveals a cyclical pattern, whereby the amplitude of the cycles increases
dramatically from the seventies on. This cyclical pattern can also be identified in the
autocorrelation function of the differenced time series, although it is not as strongly

expressed as for the first differences of the unemployment series.

The description of the time series can now be summarized as follows:

Three of the time series, i.e., unemployment rate, spirits and cigarette consumption exhibit
a structural break within the level series, the break-point year can be estimated roughly
for all the three series at about 1970. With the exception of total mortality, all the
time series exhibit heteroscedasticity in first differences. Two of the time series, i.e.
unemployment rate and real gross domestic product, show a business cycle component.
For the exploratory analysis here, we ignore the problems with structural breaks and
heteroskedasticity and assume in addition that all time series are integrated of order one
with stationary first differences.

The use of an age- and sex-adjusted mortality rate as dependent variable with non-
adjusted independent variables is acceptable for our preliminary, exploratory analysis.
The statistical problems of such an approach should be investigated thoroughly before

any final conclusions can be drawn (Rosenbaum/Rubin [1984]).
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Figure 2: United Kingdom, Total Mortality Rate, per 1000: time series properties.
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Figure 3: United Kingdom, Unemployment Rate, per 100: time series properties.
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2.2 Total mortality: estimated models

Based on the Poisson distributed lag approach we estimated 11 different models to analyze
the relationship between total mortality and unemployment for the United Kingdom. In
addition to the usual regression output we provide a plot of the estimated normalized
lag distribution coefficients and a plot of the residuals autocorrelation function. The
maximum lag length was set to 15 years.

Please note that when different Poisson lag distributions are to be compared, not only the
plot of the normalized lag weights w; ;, and the associated mean lag \i are relevant. The
evaluation of the total effect also requires taking into account the associated parameter
Ok, which is especially important because of the sign of (.

Models 1-4 are level models where the total mortality (RTMORT) is regressed on each
of 4 independent variables, i.e. unemployment rate (UR), spirits consumption per capita
(ALC), cigarette consumption per capita (CIG) and real gross domestic product (RGDP).
The letter S is put at the beginning of a variable name when it refers to the sum of the

weighted lagged variable, e.g.

15
SUR:(A) = w;i(A)URy_;.

=0
All single variable models provide an excellent fit with a minimum R? of 0.924. The
coefficients of the independent variable in each model are highly significant with p-values
of less than 0.01. We are surprised to find negative signs not only for the coefficient
of the unemployment rate variable but also for the spirits consumption variable. This
would contradict our earlier findings. For real gross domestic product we find that the
Poisson lag distribution is extremely right truncated and the mean lag X is equal to 12.26
years, which would show a very long persisting impact of real gross domestic product
on mortality. Right truncation also can be seen for the impact of spirits consumption
but the truncation effect it is not as severe as for real gross domestic product. Despite
the truncation we cannot increase the maximum lag length because with such a limited
number of observations no direct comparison could be made with the multivariate models,
where all 4 independent variables are included. The loss of degree of freedoms would no
longer allow for valid statistical inference from such regressions.
Models 5-8 are used to repeat the first four regressions with all the variables in first

differences. This is done as a check for spurious regression, which always may be a problem
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in time series regression analysis. The fit of all models drops dramatically downward, the
R?’s are close to zero and with the exception of spirits consumption the coefficients of
the independent variable are no longer significant. These results indicate clearly that,
for the derivation of useful results, all our time series regression analysis should be done
within the framework and with the econometric tools of modern cointegration analysis,
i.e. unit root tests and cointegration tests (e.g. Banerjee et al. [1993]). The discussion of
these techniques is not within the scope of this introduction to distributed lag modeling.
The main problem of applying these modern econometric tools is that the statistical
characteristics of these procedures are not well defined when the data have anomalies
like structural breaks and heteroskedasticity. But within the scope of our preliminary
exploratory analysis, we can justify presenting the results of a so called ‘error correction
model” (Model 11), without being overly concerned by the statistical details.

Models 9 and 10 are multiple regression models where all 4 independent variables are
included at the same time and all the parameters and lag distributions are estimated
simultaneously. Model 9 uses all the variables in level, Model 10 uses all variables in first
differences. In both cases the results are quite different from the results that we have found
with the single independent variable models. In both models all the coefficients have the
sign that we expected theoretically and confirmed the results of our earlier research work.
When we compare the ‘crude’ and the ‘adjusted’ mean lags, we see that the most import-
ant changes occured when we compare the level variable models 1-4 and model 9: For the
unemployment rate not only did the sign of the coefficient change but also the mean lag
increased from 6.40 years to 9.48 years. The impact of spirits consumption changed the
sign, and the mean lag was reduced from more than ten years to zero, i.e., there is only a
contemporaneous effect of spirits consumption. The mean lag for cigarette consumption
increased from 5.80 years to circa 10 years. The adjusted mean lag seems more plausible
for cigarette consumption. In addition we see that the ‘adjusted’ lag distribution for ci-
garette consumption is also right truncated, which signals that the true lag distribution,
which could be estimated when it would be possible to increase the maximum lag length,
is even higher. For the real gross domestic product we observe that the ‘adjusted’ mean
lag is much smaller than the ‘crude’ mean lag: it drops from more than 12 years to a little
more than 2 years.

The lag distributions that could be derived from Model 10, where first differences had
been used are very close to the lag distributions that we had found with the level variables.
But in model 10 the fit, with an R? of 0.271, is not very good and the coefficients are only

borderline significant with p-values smaller than 0.10.
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Model 11 finally provides the results of an ‘error correction model’, which is essentially
a first difference model where the discrepancy between the total mortality rate and the
explained total mortality that was found in the level model 9 is added as an independent
variable. The coefficient of this variable measures the speed of adjustment to ‘equilibrium’.
The use of an ‘error correction model’ makes the very strong assumption of a long-term
stable equilibrium relationship between the levels of the model variables. The theoretical
foundations for such a ‘equilibrium’ relationship are a subject of continueing discussions.
We can see that all the lag distributions from model 9 to model 11 are very similar
which gives us confidence to believe the overall results from an exploratory point of view.
The short-term impact of adjusted spirits consumption raises the hypothesis that the
main effect of spirits consumption on mortality in United Kingdom results in additional
fatalities caused by accidents and violence. This finding should be confirmed by analysing
cause-specific mortality rates.

The main result is a methodological one: we have to acknowledge that multiple regression
models are necessary for the correction of potential confounders. Another important
step of our future research will be the embedding of distributed lag analysis with several
independent variables in the framework of cointegration analysis. That naive level time
series regression models may result in spurious regressions is now known for more then
25 years (Granger/Newbold [1974]). Since further analysis of this subtle problem was
given, e.g. by Philips[1986] and Plosser/Schwert[1986], the daily econometric routine of
time series regression has changed dramatically. But even up to date, comprehensive
econometric books (Banerjee et al. [1993]) provide no gold standard modeling approach.
This is especially true when the data show additonal difficulties like stuctural breaks or
heteroscedasticity. Both effects can be seen by our time series data from United Kingdom.
In addition to these more standard problems, we cannot forget the unsolved epidemilogical
time series difficulties which may arise from the use of age- und sex-adjusted variables in
conjunction with non-adjusted variables.

Nevertheless, we are now focusing on a more narrow subproblem and summarize the main
advantages of using Poisson distributed lags in comparison to Almon lags or Shiller lags

as follows:

e Poisson distributed lags are characterized by one single parameter A, that has a
simple and natural interpretation as it is identical to the mean lag (as long as the

lag distribution is not truncated).
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e Although the Poisson lags are determined by only one parameter A, the functional
form of Poisson lags is very flexible and the lag distributions are smooth functions,

which enhances graphic presentations and comparisons.

e The comparison of different Poisson lag distributions is simple, and especially the
epidemiologically important comparison of ‘crude’ versus ‘adjusted’ lag distributions

is straightforward.

The main disadvantage of using Poisson lag distribution models is that the involved

nonlinear optimization procedures may require substantial computation time.
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Model 1: RTMORT; = by 4 by SUR,())

Valid cases: 30

Missing cases:
Total SS:
R-squared:
Residual SS:
F(1,28):

Durbin-Watson:

Variable Estimate

CONST 13.356046

SUR -0.375132
s
Z
=
)
‘D
2
)
<
3

Dependent variable: RTMORT
0 Deletion method: None
50.101 Degrees of freedom: 28
0.927 Rbar-squared: 0.924
3.672 Std error of est: 0.362
354.051 Probability of F: 0.000
0.984
Standard Prob Standardized Cor with
Error t-value >t Estimate Dep Var
0.121489 109.935900 0.000 - -
0.019937 -18.816249 0.000 -0.962659 -0.962659
A =6.40
0200 — 7T T T T T T T T T T T 1
0.150 _
0.100 _
0.050 —
0.000 L1 1 1 1 1 1 1 1 ] ] ]
012 3 45 6 7 8 9101112131415
Lag
Autocorrelation function of residuals
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0.5 _
0.0 _
—Q.5 |
—-1.0 ] ] | | | | | | | | | ] ] ]
012 3 45 6 7 8 9101112131415
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Modell 2:

Valid cases: 30

RTMORT; = by + by SALC()\)

Dependent variable: RTMORT

Deletion method: None
Degrees of freedom: 28
Rbar-squared: 0.958
Std error of est: 0.268
Probability of F: 0.000
Prob Standardized Cor with
t-value >t Estimate Dep Var
100.805426 0.000 - -
-25.888406 0.000 -0.979744 -0.979744
A =10.10

Missing cases: 0
Total SS: 50.101
R-squared: 0.960
Residual SS: 2.009
F(1,28): 670.210
Durbin-Watson: 1.626
Standard
Variable Estimate Error
CONST 15.104979 0.149843
SALC -3.241137 0.125196
0.200 T
3 0.150 -
Z
o
= 0.100 -
z
¥
—  0.050
0.000
01 2

AN T
[ 0 =
D

7 8 9101112131415

Lag
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IS S

13 14 15

2 0 =
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Model 3:

Valid cases:

Missing cases:

Total SS:
R-squared:
Residual SS:
F(1,28):

Durbin-Watson:

Variable

RTMORT; = by + b1SCIG4 ()

Estimate

RTMORT

None
28
0.938
0.328
0.000

Cor with
Dep Var

3.899955
0.004159

Lag weights w;

30 Dependent variable:
0 Deletion method:
50.101 Degrees of freedom:
0.940 Rbar-squared:
3.012 Std error of est:
437.698 Probability of F:
1.179
Standard Prob Standardized
Error t-value >t Estimate
0.365259 10.677231 0.000 -
0.000199 20.921244 0.000 0.969472
A=5.80
0200 7T 7T T T T T T 1T T T T T 71
0.150 _
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0.000 ] | | | | | | | | | | | |
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012 3 45 6 7 8 9101112131415
Lag
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Model 4: RTMORT; = by + b1SRGDP())
Valid cases: 30 Dependent variable: RTMORT
Missing cases: 0 Deletion method: None
Total SS: 50.101 Degrees of freedom: 28
R-squared: 0.964 Rbar-squared: 0.962
Residual SS: 1.822 Std error of est: 0.255
F(1,28): 741.941 Probability of F: 0.000
Durbin-Watson: 1.707

Standard Prob  Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
KONST 17.455679 0.225772  77.315428 0.000 - -
SRGDP -0.018484 0.000679 -27.238597 0.000 -0.981648 -0.981648

0.150

0.100
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L L1 11 111
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Model 5:

Valid cases:

Missing cases:
Total SS:
R-squared:
Residual SS:
F(1,27):

Durbin-Watson:

Variable Estimate

-0.093901
-0.150368

Lag weights w;

DRTMORT; = by + b1 SDUR; ()\)

29 Dependent variable: DRMORT
0 Deletion method: None
3.123 Degrees of freedom: 27
0.019 Rbar-squared: -0.018
3.065 Std error of est: 0.337
0.511 Probability of F: 0.481
3.015
Standard Prob Standardized Cor with
Error t-value >t Estimate Dep Var
0.084863 -1.106501 0.278 - -
0.210330 -0.714916 0.481 -0.136302 -0.136302
0.150
0.100
0.050
0.000 ] | L1 L 1 1 1 ] ] ] ]
012 3 45 6 7 8 9101112131415
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012 3 45 6 7 8 9101112131415
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Model 6:

Valid cases:

Missing cases:
Total SS:
R-squared:
Residual SS:
F(1,27):

Durbin-Watson:

DRTMORT; = by + by SDALC;()\)

DRMORT

None
27
0.104
0.316
0.049

Cor with
Dep Var

Variable Estimate

KONST -0.162012

SDALC 1.093878
s
Z
=
a0
RS
z
o0
S
—

29 Dependent variable:
0 Deletion method:
3.123 Degrees of freedom:
0.136 Rbar-squared:
2.699 Std error of est:
4.242 Probability of F:
2.867
Standard Prob Standardized
Error t-value >t Estimate
0.060172 -2.692474 0.012 -
0.531088 2.059693 0.049 0.368494
A=0.10
LOOO —r—TT T 1T T T 17 1T T T T T T 1
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Model 7:

Valid cases:

Missing cases:
Total SS:
R-squared:
Residual SS:
F(1,27):

Durbin-Watson:

DRTMORT; = by + b;SDCIG,())

DRMORT

None
27
0.004
0.333
0.303

Cor with
Dep Var

Variable Estimate

KONST -0.119803

SDCIG 0.001625
s
Z
=
a0
RS
z
o0
S
—

29 Dependent variable:
0 Deletion method:
3.123 Degrees of freedom:
0.039 Rbar-squared:
3.001 Std error of est:
1.104 Probability of F:
3.018
Standard Prob Standardized
Error t-value >t Estimate
0.063547 -1.885245 0.070 -
0.001546 1.050782 0.303 0.198211
0.150
0.100
0.050
0.000 ] | I I L 1 1 1 ] ] ] ]
012 3 45 6 7 8 9101112131415
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Model 8:

Valid cases:

Missing cases:

Total SS:
R-squared:
Residual SS:
F(1,27):

Durbin-Watson:

Variable

KONST
SDRGDP

Estimate

-0.176098
0.004536

DRTMORT; = by + b;SDRGDP,())

DRMORT

None
27
-0.020
0.337
0.508

Cor with
Dep Var

0.128097

29 Dependent variable:
0 Deletion method:
3.123 Degrees of freedom:
0.016 Rbar-squared:
3.072 Std error of est:
0.450 Probability of F:
2.980
Standard Prob Standardized
Error t-value >t Estimate
0.087715 -2.007624 0.055 -
0.006759 0.671140 0.508 0.128097
A=0.1
LOOO —r—TT T 1T T T 17 1T T T T T T 1
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Zz
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Model 9: RTMORT;

Valid cases:

Missing cases:
Total SS:
R-squared:
Residual SS:
F(4,25):

Durbin-Watson:

Variable Estimate
CONST 10.462199
SUR 0.710696
SALC 0.823564
SCIG 0.005171
SRGDP -0.031662

= by + b SURL(A) + b2SALC,(\) + b3SCIG(A) + bySRGDP, ())

30 Dependent variable: RTMORT
0 Deletion method: None
50.101 Degrees of freedom: 25
0.982 Rbar-squared: 0.980
0.885 Std error of est: 0.188
347.502 Probability of F: 0.000
2.740
Standard Prob Standardized Cor with
Error t-value >t Estimate Dep Var
1.146956 9.121713 0.000 -—- -—-
0.142506 4.987118 0.000 1.616201  -0.938987
0.358819 2.295206 0.030 0.218419 -0.659281
0.000714 7.246578 0.000 0.913036 0.870176
0.004812 -6.579312 0.000 -1.909256 -0.968661

Autocorrelation function of residuals
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(Model 9 continued on next page)
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(Modell 9 continued)

Lag weights w;

Lag weights w;
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Figure 7: Level model, comparison of crude and adjusted Poisson lag distributions
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Model 10:

DRTMORT; = by + b1SDUR (A1) + bySDALCy (A2) + bsSDCIG,(As) + bsSDRGDP; (\4)

Valid cases: 29 Dependent variable: RTMORT
Missing cases: 0 Deletion method: None
Total SS: 3.123 Degrees of freedom: 24
R-squared: 0.271 Rbar-squared: 0.149
Residual SS: 2.277 Std error of est: 0.308
F(4,24): 2.229 Probability of F: 0.096
Durbin-Watson: 2.988

Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
KONST 0.012400 0.146242 0.084793 0.933 - -
SDUR 0.952861 0.506232 1.882261 0.072 0.824401 -0.077014
SDALC 1.388260 0.532610 2.606525 0.015 0.513863 0.390671
SDCIG 0.006212 0.003285 1.891245 0.071 0.662503 0.190683
SDRGDP -0.041622 0.023528 -1.769014 0.090 -0.606890 -0.012008

Autocorrelation function of residuals
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(Model 10 continued on next page)
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(Modell 10 continued)

Lag weights w;

Lag weights w;
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Model 11:

DRTMORT; = by + blSDURt(Al) + boSDALC, ()\2) + b3SDCIG, ()\3) + b4SDRGDPt()\4) + b5 ECM;_1

Valid cases:

Missing cases:
Total SS:
R-squared:
Residual SS:
F(5,23):

Durbin-Watson:

Variable Estimate
KONST -0.014619
SDUR 0.620757
SDALC 0.915984
SDCIG 0.005141
SDRGDP -0.025244
ECM -1.435687

29 Dependent variable: DRTMORT

0 Deletion method: None

3.123 Degrees of freedom: 23

0.784 Rbar-squared: 0.737

0.674 Std error of est: 0.171

16.721 Probability of F: 0.000
2.318

Standard Prob  Standardized Cor with

Error t-value >t Estimate Dep Var

0.072424 -0.201858 0.842 - -
0.242329 2.561626 0.017 0.537088 -0.077006
0.318145 2.879135 0.008 0.331703 0.386225
0.001736 2.962339 0.007 0.509139 0.167537
0.010141 -2.489370 0.020 -0.399378 -0.011911
0.186924 -7.680588 0.000 -0.762348 -0.796805
Autocorrelation function of residuals
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(Model 11 continued on next page)
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(Modell 11 continued)
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Figure 9: ECM Model, adjusted Poisson lag distributions
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A European Reference Population

Age Group | Males | Females

0-4 16 175 | 15 352

5-9 16 542 | 15715
10-14 17292 | 16 460
15-19 18 417 | 17 508
20-24 19 859 | 18 974
25-29 19 963 | 19 265
30-34 19001 | 18514
35-39 18120 | 17 821
40-44 17195 | 16 991
45-49 14 590 | 14 636
50-54 14 444 | 14 839
95-59 13430 | 14 246
60-64 12 200 | 13 937
65-69 10 069 | 13 256

70-74 5 957 8 653
75-79 5419 9 019
80+ 4 599 9 909

From:

United Nations: The Sex and Age Distribution of Population. The 1990 Revision
of the United Nations Global Population Estimates and Projections. (Population
Studies No. 122), New York 1991, p. 42, year 1990.
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